The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda $g$-soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson's $q$-Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.
展开▼
机译:利用Sato理论,计算了与Toda $ g $-孤子相关的双重无限Jacobi矩阵的Stieltjes谱矩阵度量。结果用于在一系列Jackson的$ q $ -Bessel函数中显式扩展一些离散热方程的基本解。对于Askey-Wilson型孤子,这种扩展减少到有限的和。
展开▼